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Abstract—Field sobriety tests and breathalyzers are commonly
used to prevent alcohol-impaired driving, but are expensive and
time-consuming to administer. We propose a set of sobriety tests
which, in contrast, can feasibly be automated and deployed to
modern vehicles equipped with a driver monitoring camera.
Our tests are inspired by research on the physiological effects
of alcohol, with particular focus on eye movements and gaze
behavior. We run an exploratory in-lab study with N=50 subjects
(20 alcohol-impaired, 30 control), and train a variety of models
to detect alcohol impairment. We find that, using only 10 seconds
of observations of the driver, one of the four proposed tests
performs comparably to existing non-breathalyzer field sobriety
tests. We make our code and data available to support further
research efforts to combat alcohol-impaired driving: https://
toyotaresearchinstitute.github.io/IV25-beyond-breathalysers/.

I. INTRODUCTION

Alcohol intoxication is one of the leading causes of road

traffic accidents. The World Health Organization estimated that

in high-income countries in 2023, around one fifth of fatally

injured drivers had a blood alcohol concentration (BAC) above

the legal limit, while in middle- and low-income countries, 33-

69% of fatally injured drivers had consumed alcohol prior to

their crash [1]. The National Highway Traffic Safety Adminis-

tration (NHTSA) estimated that alcohol-impaired driving costs

the US economy around $280 billion/year in lost wages, lost

quality of life, medical costs, and more [2].

Because of its significant societal cost, a variety of methods

to detect alcohol impairment have become commonplace in

driving: in particular, measurement of Breath Alcohol Con-

centration (BrAC) through a breathalyzer test, and the now-

standardized field sobriety tests [3] which are used in road-

side stops. The European New Car Assessment Programme

(Euro NCAP) “Roadmap for 2030” highlighted the urgent

need for automakers “to expand the scope of driver impairment

adding specific detection of driving under the influence...

with advanced vision and/or biometric sensors” [4], while in

the US, the Bipartisan Infrastructure Law in 2021 created

regulations requiring improved drunk and impaired driving

prevention technology [5].

Prior work has proven the feasibility of detecting alcohol

intoxication without breathalyzers by observing a driver’s

behavior over several minutes of driving (e.g. [6]). Here, we

explore whether sobriety testing might be feasible within a
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short period (under 10 seconds) prior to driving, using only

the sensors available in many modern cars: a driver monitor-

ing camera to capture gaze and eye features, an instrument

cluster or console to display messages, and a steering wheel

for control feedback. If successful, such tests could help to

identify or flag likely-impaired drivers before they begin to

drive. They could provide objective feedback to drivers, who

often underestimate their own alcohol levels [7], about their

readiness to drive. They could even be deployed outside of

a driving context, e.g. to monitor employee well-being in

industries where sobriety is critical to safety.

Our paper makes the following contributions:

• We design and implement four candidate visuomotor

sobriety tests suitable for in-vehicle deployment.

• We run a carefully designed human subjects study with

50 test subjects (20 alcohol-impaired, 30 control).

• We design and evaluate several machine learning models

to assess the ability of the tests to discriminate between

intoxicated and sober states.

II. RELATED WORK

The impairment of sensory, motor, and intellectual faculties

following alcohol consumption has been extensively studied

through laboratory, simulated, and on-road driving. For recent

comprehensive reviews, see [8]–[10]. Below we review the

most relevant work in (i) existing sobriety tests, (ii) gaze and

eye behaviors under alcohol intoxication, and (iii) attempts to

predict alcohol intoxication from sensory data.

A. Existing Sobriety Tests

The most reliable methods for assessing alcohol intoxication

are chemical and invasive: they sample the blood, saliva,

or breath of the individual. Although they are accurate and

straightforward to administer, they require additional sensors

not commonly available in vehicles. We use the most common

of these methods, the breathalyzer test, to measure ground

truth alcohol intoxication in our dataset.

Behavioral tests, which do not require specialist sensors,

are also commonly used: the “Field Sobriety Tests” comprise

several which examine for symptoms of intoxication through

simple physical tasks (see Fig. 2). These include performing

actions such as walking heel-to-toe in a straight line, standing

on one leg, and the “horizontal gaze nystagmus” test [11],

which involves following an object with the eyes (such as a

pen) to examine for characteristic impaired eye movements.

While useful in the field, these tests require physical activity
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Fig. 1: Paper summary. We design a set of visuomotor tests which can be carried out in a vehicle in under 10 seconds, before driving, to assess driver
sobriety using a driver monitoring camera. Driver responses to the test are assessed using machine learning models which analyze driver gaze tracking and
response times against known sober behavior and predict between sober or impaired (approx. 0.10g/dl Blood Alcohol Concentration) states.

and/or interaction with an examiner, and cannot obviously be

transferred to a vehicle environment.

In contrast to these existing tests, we focus on the in-

vehicle setting. This affords access to gaze tracking through

a driver monitoring camera, with stricter requirements in

terms of observation time since the window for collecting

observations prior to driving is short. While the tests may

require compliance from the driver, the actions required might

feasibly be incorporated into the routine of vehicle startup to

‘unlock’ it for driving.

B. Gaze and Eye Behavior under Alcohol Intoxication

Alcohol intoxication is known to affect a vast range of

cognitive, perceptual, attentional, and motor functions, even at

low doses [9]. For a summary of its effects on driving behavior,

see [5]. Focusing on the visual system, some examples of

negatively impacted processes include motion parallax [12],

visual scanning [13], vestibulo-ocular reflex [14], [15], and

the ability to perform spatial vigilance tasks [16].

In driving, alcohol has been found to generally impair

performance on all driving sub-tasks (e.g. lane keeping, brake

reactions, situational awareness), but the level of impairment

on visual tasks has been related to the information processing

demand [9]. A study of the eye movements of alcohol-

intoxicated subjects observing realistic traffic scenes showed

that alcohol has a significant effect on the latency, velocity

and accuracy of saccades, even at low BACs (0.04%-0.06%),

reducing the inflow of visual information [17]. Further studies

have found significant alcohol-induced differences in gaze

behavior, e.g. as measured by gaze transition entropy and

stationary gaze entropy [18], although these were in simulated

driving within specific driving scenarios.

Given the many ways in which gaze and eye behaviors

are affected by alcohol intoxication, developing automatic

ways to use those cues for earlier detection of intoxication

is useful [19], and made possible by the growing presence of

driver monitoring cameras in modern vehicles.

C. Automatic Alcohol Impairment Prediction

Alcohol impairment has been predicted in various contexts,

including from gait using smartphone sensors [20] or combi-

nations of smartphone and wrist-worn sensors [21], from facial

and gaze features in RGB video [22], and from speech [23].

While using other modalities such as speech or RGB can

certainly help in impairment prediction, in this work, we focus

on using gaze tracking data, as might be available from a

driver monitoring camera. Gaze tracking has the significant

benefit that the domain gap between in-lab and in-vehicle

environments is relatively narrow (compared to, for example,

RGB which can be impacted by external lighting conditions, or

speech which can be affected by background noise or music),

making results more likely to generalize to a real deployment.

The gaze modality also better protects user privacy.

In closely related work to ours, Makowski et al. [24] gath-

ered eye tracking data from 44 participants completing a set of

vigilance tasks under sober and intoxicated conditions. Their

results demonstrate that contactless inebriation detection based

on eye gaze is possible. However, they gather eye tracking data

in conditions that are not feasible in a vehicle cabin (2 kHz

with participants’ heads stabilized using a chin and forehead

rest). They conclude that future research is needed to explore

the use of lower frequency devices such as the one we use in

our study. Here we aim to provide a similar proof of concept

within the constraints of the driving application.

The work of [25] explored the use of smartphones to

measure how alcohol affects a person’s motor coordination

and cognition. They designed various “drunk user interfaces”

and trained models on human performance metrics and sensor

data to estimate a person’s BAC, finding that results with

high correlation to breathalyzer measurements can be achieved

after user-specific learning. Our work is similar, in that we

design interactions with the goal of eliciting signs of alcohol

intoxication. However, we constrain our application to short

interactions in a driving environment, assuming the presence

of a gaze tracker, rather than a prolonged interaction with

a smartphone. Interactions with smartphones and wearable

devices, when available, can be used to gather further evidence

of driver state and are complementary to our own approach.

Attempts to identify alcohol-intoxicated drivers in real-time

using driving performance data have been explored. For exam-

ple, performance comparable to the standardized field sobriety

tests has been achieved using a variety of machine learning
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Fig. 2: Our approach compared to existing field sobriety tests (FSTs). Left: Existing FSTs (walk-and-turn, one-leg stand, horizontal gaze nystagmus,
breathalyzer test) are carried out by law enforcement officers. They are time-consuming and subjective. Right: We investigate whether tests might feasibly be
run without drivers exiting their vehicles, in vehicles fitted with a driver monitoring camera. We design four candidate tests which are objective and relatively
quick to administer. We evaluate their accuracy in this paper and encourage further exploration of this design space of in-cabin sobriety testing.

models operating on eight minutes of driving observations [6],

although differences between drivers and roadway situations

had a large influence on algorithm performance. Other recent

work used a logistic regression model over eye, gaze and

head movement features extracted from a driver monitoring

camera [26]. Our work is again complementary, since we

aim to produce the strongest possible prediction for driver

intoxication, before driving begins. Earlier predictions could

help inform downstream driver models and interactions.

III. TEST DESIGN

A. Test Desiderata

An ideal in-vehicle sobriety test should meet four key

characteristics:

• Quick to run: so it can be carried out prior to driving

with minimal disruption to journey time.

• Intuitive: easy for a user to understand/perform, with little

or no learning curve.

• Easy to deploy: not relying on additional sensors (such

as breathalyzers), making it cheap to implement.

• Accurate: should make impairment at low BAC apparent

with as few false positives as possible.

B. Candidate Tests

Drawing from our understanding of the behavioral impact of

alcohol intoxication from Sec. II and the desired characteristics

of an in-vehicle sobriety test, we generated a set of four

candidate tests, illustrated in Fig. 3. Each test uses visual

stimuli such as moving dots and text on an LCD screen,

which could reasonably be displayed on an instrument cluster,

console or heads-up display in a vehicle.

1) Gaze Tracking (GT) Test: We simplify the horizontal

gaze nystagmus (HGN) test [11], which is commonly used

in field sobriety testing, to make it more compatible for an

in-vehicle deployment. The HGN test requires a subject to

track a horizontally moving object at varying speeds to the

maximum angle of lateral deviation either side of center. Al-

cohol intoxication often results in a lack of smooth pursuit and

the onset of nystagmus (rhythmical, repetitive and involuntary

eye movements) at and beyond 45 degrees of lateral deviation.

The test evaluates the ability to smoothly estimate gaze over

a wide lateral range, but this is challenging if using centrally-

mounted eye trackers (as are common in driver monitoring

Fig. 3: Screenshots from instructional videos for our four proposed tests.
The tests were designed to assess various aspects of behavior and decision-
making that are impacted by alcohol impairment. Videos of the instructions
shown to experiment participants are included in the Supplementary Video.

systems), because gaze estimation accuracy worsens at high

lateral angles due to perspective distortion of the pupils. We

adapt this test for in-vehicle deployment by testing only one

side of vision: subjects tilt their head such that the gaze

tracking camera is mounted at about 30 degrees offset from

their forward direction. Keeping their head fixed, they track

a dot as it moves back and forth across the screen in one

hemisphere of their vision. This adjustment means that gaze

tracker estimates are improved for higher lateral gaze angles,

halves the time taken to administer the test (at the cost of

half of the behavioral observations), and halves the screen size

required to display the moving target.

2) Fixed Gaze (FG) Test: The “head impulse test” is a

commonly used clinical test in which a subject, seated in

front of an examiner, is asked to fixate on the examiner’s

nose while their head is guided in a series of unpredictable,

limited amplitude but high-velocity movements [27]. This tests

for vestibulo-ocular reflex (VOR), the mechanism by which

vision is stabilized during head motion by coordinating eye



movements in the opposite direction. Since VOR is known to

be impacted at low levels of BAC [14], [28], it is an effective

method for determining alcohol intoxication. It is not possible,

or safe, to physically guide a driver’s head through high-

velocity movements, but we explore whether VOR impairment

can be determined by asking subjects to quickly move their

heads in response to random left and right stimuli. With

a normally functioning VOR, the driver should be able to

maintain their gaze on a fixed target, in a central position

near the gaze tracking camera.

3) Silent Reading (SR) Test: A study into the effect of

alcohol on reading found that the number and duration of eye

fixations increased significantly with increased breath alcohol

concentration [29]. Since reading is a natural task to perform in

a vehicle, we explore whether this effect is significant enough

to be detected through short observations of the driver reading

messages on an instrument cluster. We create a set of realistic

messages related to vehicle use.

4) Choice Reaction (CR) Test: Recent work on designing

mobile user interfaces to detect alcohol intoxication [25] found

that the best performing discriminatory task involved reacting

to a divided attention stimulus. A task involving attention,

peripheral vision and rapid motor control can place sufficient

information processing load on subjects to make alcohol

impairment evident at lower BAC. We adapt this type of task

to a driving setting: we design a choice reaction test in which

two traffic light stimuli are presented at random to the driver,

and the driver responds by pressing or releasing two steering

wheel buttons in response.

C. Implementation

Our tests were implemented using PyQt, a Python bind-

ing of the GUI toolkit Qt. Each test was preceded with

an instructional video, explaining the goal of the test to

participants (see Supplementary Video). To improve ease of

understanding and execution, the videos and the tests were

tested and improved with five sober pilot study participants,

whose data was discarded. Sensor recordings from the tests

were captured and synchronized using ROS2 [30]. All of the

tests involved multiple repeats: the gaze tracking test involved

multiple horizontal scans, while the other three tests each

contained 20 iterations of the action-provoking stimulus during

a single run, yielding larger sample sizes.

IV. DATA COLLECTION

A. Collection Setup and Protocol

Each subject participated in two sessions in a driving sim-

ulator, shown in Fig. 4a. For tracking eye and gaze behaviors,

we used a Tobii Pro Spark desktop gaze tracker, chosen for its

ease of use and availability while having a comparable spec

to modern driver monitoring systems. During each session,

subjects first completed an 8-point gaze calibration procedure,

then watched instructional videos for and executed each of

the four tests once, taking approximately 10 minutes in total.

(a) Driving simulator setup

Tobii Pro Spark
Tobii Pro Spark
Fanatec Gran Turismo DD Pro

60 Hz
60 Hz
async.

    Measurement            Sensor 
3D gaze measurements
Pupil diameter
Vehicle control inputs

(82)

(350)

(13)(13)

(17)
(7)

Details 

Invalid Gaze Data Ratio

(b) Dataset summary statistics

Fig. 4: Dataset overview. Using (a) a driving simulator with a Tobii Pro
Spark gaze tracker, we captured data of sober and alcohol-impaired subjects
completing a set of visuomotor tests while seated in a vehicle. We captured
test data from (b) 50 subjects (30 sober, 20 alcohol-impaired), comprising 7.2
hours of gaze tracking data and vehicle control inputs.

Between sessions, subjects participated in other driving exper-

iments (described in [31]) and rested to minimize the effects

of fatigue.

Session 1 was completed in a sober state by all 50 subjects.

Session 2 was completed after alcohol consumption for 20

of the subjects, while the remaining 30 completed it sober.

Alcohol was administered in shots of 80 proof (40% Alcohol

By Volume) spirits selected by the subject, to a target BAC

of 0.10% using the Widmark formula. BAC was monitored

using a Alco-Sensor FST breathalyzer breathalyzer until it

had reached the target concentration or peaked, at which point

the test was administered. BACs were recorded for alcohol-

impaired subjects just prior to the second session and again, 15

minutes after its completion, yielding an average BAC across

participants of 0.096±0.021%.

B. Safety and Ethical Considerations

Subjects who were intoxicated as part of the study were

monitored after study completion, and released only once their

BAC had fallen to safe levels (where “safe” was determined
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Fig. 5: Mean and standard deviation gaze location (normalized x and y position on screen) across all subjects for first 30s of each test.

based on the elected mode of transport for each participant).

During the study, any subjects who felt uncomfortable were

allowed to cease the study immediately, and subjects who

were not comfortable with the target amount of alcohol were

given the chance to opt out of consuming alcohol. From an

initial pool of 62 subjects (including pilot test subjects), we

obtained a final dataset of 50 subjects who completed both

Sessions correctly. The test protocol was approved through

an Institutional Review Board with WCG (IRB Protocol

#20241945). Participants were aged 23-65 (average 35.2) and

provided written informed consent. While we made best efforts

to obtain a diverse subject pool, a larger dataset would be

necessary to properly assess for certain biases such as age

and ethnicity.

C. Dataset

Summary statistics from the final collected dataset are

shown in Fig. 4b. In total, we collected over seven hours

of data from participants (20 Female/30 Male, 19% alcohol-

impaired/81% sober) and 100 completions of each test. The

ratio of invalid to valid gaze data was found to be significantly

higher on average during the Fixed Gaze test and for subjects’

left (L) eyes in the Gaze Tracking test. This was due to the

severe head motions required to complete the tests, which

caused failures within the gaze tracker. Fig. 5 shows the

mean and standard deviation of gaze location for a 30 second

portion of each of the four tests, averaged over all participants,

highlighting the variety of behaviors tested and the uniformity

of eye motions across subjects within each test.

V. MODEL

The goal of our model is to best infer an individual’s

impairment state from a short window of observational test

data. The high noise levels in our raw data (as shown by

higher invalid gaze data ratios in Fig. 4b) pose a challenge

to typical gaze feature extraction pipelines. We opt to use

a deep learning approach, which is known to reliably yield

strong performance at noisy pattern classification tasks given

sufficient training [32]. Our model, shown in Fig. 6, takes two

samples of data, one from a known sober (baseline) state, and

one from an unknown (test) state, extracts features and com-

pares the features to determine the state prediction. Code for

the models tested will be made available for reproducibility;

here we summarize the key components of the model at a high

level:

Random sampler, R. The random sampler extracts a win-

dowed segment of W time steps from a given subject’s Session

1 and Session 2 data for a single test type. During training, the

samples are extracted at the same randomly chosen point, with

some time jitter, and sample pairs from sober subjects have

their session order flipped at random 50% of the time. Left or

right eye data is also selected at random during training time,

to create a model with lower dimensional input and double

the training data. Since the dataset is relatively small, we limit

the dimensionality of the data, D, to 4: left or right eye 2D

gaze position on screen, gaze tracking validity, and an event

message, which provides the timing of test stimuli and button

responses.

Feature embedding model, F . The D × W samples are

fed to a feature embedding model, F . We explore two types

of F : (1) a deep convolutional neural network, trained from

a random initialization; and (2) a state-of-the-art foundation

model for general-purpose time-series analysis [33], which is

frozen during training. The latter has the significant advantage

of being pre-trained through masked time-series prediction

on large and diverse time series data from many domains,

meaning it is likely to be able to capture useful temporal

features in noisy data.

Comparison network, C. The Comparison network takes

paired input features from F and combines them to output a

predicted Session 2 state (where the correct state should be

y = 1 for alcohol-impaired, y = 0 otherwise). We find that

direct differencing (in which Session 2 features are subtracted

from Session 1 features at the input of the network) empirically

works better than feature concatenation, so we adopt this

approach for all experiments.

A. Training

From a paired sober (x1) and unknown (x2) input sample,

our model computes the predicted unknown state ŷ:

ŷ = C
(
F
(
R(x1)

)
, F

(
R(x2)

))
. (1)

We minimize the weighted binary cross-entropy loss against

ground truth y:

L(y, ŷ) = −(
w1y log(ŷ) + w0(1− y) log(1− ŷ)

)
, (2)

where weights w are set according to normalized inverse class

frequency, accounting for the class imbalance between sober



Fig. 6: Model overview. Each Subject i sits a test in a known sober state (during Session 1) and an unknown second state (during Session 2). A Random
sampler, R, extracts random, augmented samples from the data from each test, and passes them to a Feature Embedding Model, F , which captures different
temporal characteristics in the signal. A Comparison Network, C, has access to information from both embeddings to produce an estimate of the inferred
state of Session 2. During training, the Session 2 state is known and used to backpropagate prediction errors through C and optionally F .

and impaired training data. All models are implemented in Py-

Torch [34] and trained using AdamW [35] on a single NVIDIA

Quadro RTX 6000 GPU. For the pre-trained model, we use

the ‘MOMENT-1-small’ version [33]. We set window length

W = 512. This corresponds to 8.5 seconds of observational

data, which we assume is a reasonable duration for a pre-

driving test to minimize inconvenience to a driver.

B. Evaluation

We are interested in the generalization performance of

our model to new test subjects, so we adopt a five-fold

cross-validation approach with held-out subjects. We measure

performance using Balanced Accuracy (BAcc - which takes

class imbalance into account) and F1 scores, averaged across

held-out folds. Test samples are taken from the first 30s of each

test, and left and right eye predictions, ŷl and ŷr, are combined

using a max function ŷ = max(ŷl, ŷr) for simplicity.

VI. EXPERIMENTS

A. CNN vs. Foundation Model

For the feature embedding model, F , we compared the

average performance across all data of a high-capacity trans-

former model pre-trained on diverse time-series data [33], with

the performance of a CNN trained from scratch. We found

that, despite exploring different CNN architectures (varying

depth, width, normalization), we were unable to make the

CNN approach perform on average any better than chance (F1

= 0.42± 0.06, BAcc = 0.49± 0.03. However, the transformer

model succeeded in finding a signal in at least some of the

tests (F1 = 0.54±0.06, BAcc = 0.57±0.06). It is possible that

the training set size is insufficient to support learning features

from scratch, although further exploration of the model space

is possible in future work. Given the success of the transformer

model, we adopted it for subsequent experiments.

B. Individual Test Performance

We next explored the breakdown of individual test per-

formance for the transformer model. We trained on data

exclusively from each visuomotor test, as well as from all tests

combined. Fig. 7a and Fig. 7b show the training set vs. test

performance, averaged over 5 training runs with different

random seeds. Best performance was observed on the Choice

Reaction test, while other tests were at or slightly above

chance. This does not imply that the other sobriety tests did not

elicit observable changes in behavior, but that such changes if

any were too infrequent or too subtle to be reliably detected

using our model.

Training on all data did not appear to yield a significant

benefit compared to training on same-domain data. However,

training on data from the Silent Reading test (where gaze is

both diverse and consistently tracked) appeared to be most

beneficial to learn a general-purpose signal, sometimes even

out-performing same-domain training. This suggests that di-

verse high-quality data is most helpful to learn useful features.

While the detection of alcohol impairment is far from solved

by even the best-performing of our models, we note the wide

distribution of F1 score across subjects (Fig. 7c). This implies

that certain subjects do not exhibit easily detectable effects of

alcohol impairment as readily as others. The personalization of

models and prediction of model efficacy based on individuals

may be an interesting direction for future research.

C. Sensitivity Analyses

We next evaluated the sensitivity to various practical capture

and input variables of the test with most promising prediction

performance (Choice Reaction, CR).

Effect of sampling rate. While we collected gaze track-

ing data at 60 Hz, a common sampling rate for current

generation driver monitoring cameras is 30 Hz or below. We
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Fig. 7: Results. Left and middle: Test performance breakdown using models trained on different data splits showing out-performance of the Choice Reaction
test with modest results for other tests. Right: Sorted F1 scores by participant showing diversity of performance.

found in Fig. 8a that the Choice Reaction test maintains

reasonable performance at sampling rates down to 20 Hz,

suggesting feasible use with a lower frame-rate tracker.

Effect of varying observation window W . We next eval-

uated the effect of varying input window W on performance,

finding that longer observation windows are critical to gather

evidence for impairment detection, as might be expected

(Fig. 8b). Expanding the input window would likely improve

performance further, up to a saturation point.

Effect of varying input dimensionality D. Finally, we

examined the effect of adding and removing input information.

Our base model uses gaze and test event information, which

contains the timings of test stimuli and, for the Choice

Reaction test, the physical input response. Fig. 8c shows the

effect of removing gaze, or adding pupil diameter data to the

input. We found that gaze features extracted by the model

appear to be critical to performance, while a smaller input

dimensionality may help with training in a small data regime.

D. Summary

Quantitative assessment. Of the four tests we have pro-

posed and evaluated, the Choice Reaction yielded the strongest

detectable signal for alcohol impairment detection, with a

best balanced accuracy of 0.67. This is comparable to some

existing non-breathalyzer field sobriety tests (one-leg stand =

0.65, walk-and-turn = 0.68, horizontal gaze nystagmus = 0.77,

for BAC > 0.10% [36]), while only requiring 10 seconds of

driver time inside the vehicle. We found that the tests could

be used on a lower frame-rate gaze tracker without substantial

performance degradation, but that larger observation windows

(i.e. longer tests) were preferable to maximize performance.

The other three tests did not yield as promising results,

perhaps due to insurmountable gaze tracking noise (in the

case of the gaze tracking and fixed gaze tests) or the short

observation window for passive tasks such as reading. Further

work is needed to investigate whether more reliable signals

may be derived from these tests, or whether other modalities

of data such as video would be beneficial.

Qualitative assessment. In Sec. III we listed the design

criteria for an ideal in-vehicle sobriety test. After implement-

ing each test and running them twice over 50 subjects, we

found that the Choice Reaction test would be best overall. The

Choice Reaction test could be run using just stimuli displayed

on an instrument cluster, making it easy to deploy. Although

less intuitive than other tasks such as reading (requiring

some initial explanation about how to respond to the stimuli),

it showed the most promising discriminative performance,

perhaps because it requires rapid motor responses from the

user and as a result can elicit detectable effects of alcohol

intoxication more readily.

VII. CONCLUSIONS

We have proposed and evaluated a set of automated sobriety

tests that can feasibly be deployed in modern passenger

vehicles equipped with gaze-tracking technology. Of the four

candidate tests, one in particular showed promising results,

comparable to existing non-breathalyzer field sobriety tests.

To further build on our approach, dataset and findings, future

research should employ larger, more diverse datasets gathered

under a range of field conditions (e.g. varied lighting, subject

appearance, in real vehicles using production driver monitoring

systems), while also incorporating longitudinal data to account

for factors such as fatigue, mood, compliance over time, and

other individual differences. Ultimately, trying to leverage

existing in-vehicle sensor technologies to assess driver im-

pairment may help to bring about faster and more effective

measures against alcohol-impaired driving.
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