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Abstract—Despite recent advances in automated driving tech-
nology, impaired driving continues to incur a high cost to society.
In this paper, we present a driving dataset designed to support
the study of two common forms of driver impairment: alcohol
intoxication and cognitive distraction. Our dataset spans 23.7
hours of simulated urban driving, with 52 human subjects under
normal and impaired conditions, and includes both vehicle data
(ground truth perception, vehicle pose, controls) and driver-
facing data (gaze, audio, surveys). It supports analysis of changes
in driver behavior due to alcohol intoxication (0.10% blood
alcohol content), two forms of cognitive distraction (audio n-
back and sentence parsing tasks), and combinations thereof, as
well as responses to a set of eight controlled road hazards,
such as vehicle cut-ins. The dataset will be made available at
https://toyotaresearchinstitute.github.io/IDD/.

I. INTRODUCTION

Human drivers are prone to decision-making failures while
driving, due to a range of behavioral impairments. Such
failures can have significant consequences for human life. Two
common sources of behavioral impairment for human drivers
are alcohol intoxication and cognitive distraction.

Alcohol intoxication, even at moderate levels, is known
to significantly increase the risk and severity of road traffic
accidents. According to a recent report from the World Health
Organization, about 20% of fatally injured drivers in high-
income countries have blood alcohol concentration (BAC)
levels above the legal limit, while in low- and middle-income
countries that number rises to between 33% and 69% [1].

Cognitive distraction (CD) – inattention to the task of
driving as mental processes are diverted to other activities
– is far more prevalent in the driving population but poses
relatively lower risk since it describes a transient mental state
rather than lasting impairment. Distracted driving is typically
divided into three types – visual (eyes off the road), manual
(hands off the wheel), and cognitive (mind off the task) [2]. In
the US, distracted driving contributes to around one-tenth of
road traffic accidents [3]. While visual or manual distraction
accounts for a lot of these incidents, cognitive distraction is the
most difficult form of distraction to observe and measure [2],
making mitigation challenging.

The contributions of our paper are as follows:
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Fig. 1: Impaired Driving Dataset overview. We captured data from 52
human drivers over 25 hours of urban driving in a driving simulator, including
under alcohol-intoxicated and cognitively-distracted driving conditions and
with a range of realistic driving hazards. Our dataset supports various
analyses including: the overlap between different types of impairment, how to
distinguish one from the other, and their impact on behaviors such as visual
attention and responses to road hazards.

• We design and release the first publicly available driving
simulator experiment that combines cognitive distraction
(CD), alcohol intoxication, and road hazards, as illus-
trated in Fig. 1.

• We run our experiment on 52 individuals, capturing
a wide range of data including vehicle control during
driving, eye gaze, ground truth scene state, ground truth
impairment conditions, and various self-reported mea-
sures of driver state.

• We validate our data by analyzing the relationship be-
tween several well-defined behavioral driving features
and the various impairment conditions.

• We establish a set of machine learning baselines using
these features over four tasks – CD detection, intoxication
detection, general impairment detection, and the ability of
the model to differentiate types of impairment.

By releasing our dataset to the community, we hope to
encourage further work to develop systems that can quickly
and accurately diagnose impaired driving in various forms, in
the pursuit of improved road safety. The dataset will be made
available at https://toyotaresearchinstitute.github.io/IDD/.

https://toyotaresearchinstitute.github.io/IDD/
https://toyotaresearchinstitute.github.io/IDD/


TABLE I: A summary of closely related datasets for studying simulated manual driving under impairment. Our dataset is the first to explore the
combination of alcohol intoxication, cognitive distraction and driving hazards, while providing coverage of driver gaze, controls and scene state. ∗One hazard
scenario involving unintended acceleration. †Gaze derived from RGB video. ‡Cognitive workload (not distraction) is measured as a dependent variable.

Variables of interest Sensor data Dataset characteristics
Dataset Alcohol Cog. Dist. Hazards Gaze track Controls Scene ground truth Subjects Dur. (hr) Scenarios

C42CN [4] - ✓ ✓∗ ✓ ✓ - 68 80 Highway
CoCAtt [5] - ✓ - ✓ ✓ - 11 12 Countryside
Koch et al. [6] ✓ - - ✓ ✓ - 30 15 Varied
Keshtkaran et al. [7] ✓ - - -† - - 60 30 Urban
CL-Drive [8] - ✓‡ - ✓ - - 21 10 Varied
Ours ✓ ✓ ✓ ✓ ✓ ✓ 52 25 Urban

II. RELATED WORK

A. Alcohol intoxication and driving

The physiological and behavioral changes exhibited by
drivers under the influence of alcohol have been well studied
and documented. These changes include a decreased capacity
to process visual information [9], an increased propensity to
become distracted or not cope well with distractions [10], a
drop in vigilance [11], and changes in visual behavior and eye
movements linked to steering [12]. For a detailed review of
these changes, please see [13].

While alcohol impairment in the driving context is typically
measured using field sobriety tests administered during road-
side stops, various attempts have been made to harness vehicle
information to predict driver intoxication in real-time. Previous
work has shown that it is possible to achieve performance
comparable to the standardized field sobriety tests using eight
minutes of driving observations [14], although differences
between drivers and roadway situations had a large influence
on algorithm performance. Using further information from a
driver-facing camera (to extract eye, gaze and head movement
features), it has been shown that blood alcohol concentration
can be predicted in a laboratory setting to reasonable accu-
racy [6], [7]. In our study, we extend these prior efforts to
more diverse driving conditions, incorporating realistic road
hazards and cognitive distractions. Additionally, we make the
raw data available to support future analyses.

B. Cognitive distraction and driving

Cognitive distraction has been extensively explored in the
driving literature [15], [16], in terms of underlying psycho-
logical and physiological phenomena [17], [18] and its impact
on behavior and risk [19]–[21]. It has been investigated for
its interactions with other phenomena such as visual distrac-
tion [22], alcohol impairment [10], as well as its effect at
different age groups [23].

Another thread of research involved possible approaches
and interventions to address CD [24]–[27]. Several approaches
have been used to detect both visual distraction and CD in
various conditions and dataset realism levels [28]–[32]. How-
ever, these approaches were often explored within individual
studies, making comparing them or reproducing them difficult,
meriting a more comprehensive and unified dataset to serve as
a benchmark within the research community

C. Behavioral driving datasets

Numerous on-road datasets exist for studying driver behav-
iors such as attention [33], gaze [34], in-cabin activities [35],
or maneuver intent [36]. Studying the behaviors of drivers
under impaired conditions presents a greater safety risk, hence
the vast majority of datasets use driving simulators.

Several datasets that specifically address distraction have
been released over the years [4], [5], [8]. We compare the most
relevant datasets to ours in Table I. In general, such datasets
are often limited to distraction alone, rather than including,
e.g. interaction with alcohol impairment or curated interactions
with specific road hazards. Moreover, many of them do not
include vehicle controls or scene ground-truth information,
which limits the features and patterns that can be observed
and analyzed.

Our dataset is the first to mix the conditions of road risk
and driver state. This makes it possible to study the joint
and marginal effects of alcohol impairment and cognitive
distraction during free driving and in response to realistic
road hazards. We hope this dataset will alleviate some of
the limitations of existing datasets towards reproducible and
comprehensive research and evaluation of approaches for de-
tecting cognitive distraction and intoxication, along with their
interaction with both normal and hazardous driving conditions.

III. METHOD

A. Experimental procedure

To understand the effects of CD and alcohol intoxication,
we collected two versions of the study: impaired driving with
alcohol intoxication and CD (version 1, v1) and driving only
with CD (version 2, v2). The overall experimental flow is
visualized in Fig. 2.

v1 participants, who went through the intoxication pro-
cedure, were full-time Toyota Research Institute employees,
while v2 participants were externally recruited through User
Interviews [38]. All participants signed a consent form prior to
participation. The experimental procedure was reviewed and
approved by the WCG IRB (Protocol #20241945). All per-
sonally identifiable information is stored on HIPAA-compliant
machines to ensure participant privacy.

The study consisted of five primary components: 1) gaze
calibration, 2) pre-driving visuomotor tasks, 3) driving prac-
tice, 4) CD task practice, and 5) driving with hazards. Partici-
pants were also given questionnaires at different points in the
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Fig. 2: Experimental flow overview, consisting of two main parts separated by a break. The two experiment versions (v1 and v2) only differ in that v1
participants follow the intoxication protocol in Sec. III-B and consume alcohol during the break.

Fig. 3: Driving simulator setup, including steering wheel, pedals, tablet, and
progress button to advance through the study. Driver-facing sensors included
a Tobii Pro Spark eye tracker [37], headset microphone, and a webcam.
Participants sat approximately 65 cm from the screen.

experiment. Each participant went through these components
twice. After completing it the first time, v1 participants fol-
lowed the intoxication procedure while v2 participants took a
break. All study activity, with the exception of the intoxication
procedure, took place in the driving simulator (Fig. 3).

Prior to driving, we calibrated participants’ gaze tracking us-
ing the Tobii API [37]. Participants then spent 10 minutes per-
forming some simple pre-driving visuomotor tasks as part of
another experiment [39]. Next, participants began the driving
portion of the study, which was performed in the CARLA [40]
simulator’s Town 15 map. Participants drove through a set
route around the town for two minutes. Afterward, participants
were introduced to each of the CD tasks: the 1-back [41] and
sentence comprehension task [42]. Participants would practice
each task twice, once while they were not driving and once
while they were driving. Participants only practiced the CD
tasks during the first part of the experiment.

Participants then drove a series of four scenarios of a set
distance lasting approximately three minutes. Each of these
ended with a hazard (depicted in Fig. 4) meant to induce a
reaction in the driver. These hazards were designed to generate
interesting behaviors and test different aspects of driving,
such as reaction time and lateral scene awareness. We use
scripted hazards to ensure reproducibility and comparability
between all participants. The hazard logic was designed to
allow flexibility to different driver speeds and to adjust the

respective pedestrian or other vehicle speed accordingly.
Out of these four scenarios per block, two were carried

out with no cognitive distraction and two were carried out
with the added 1-back and sentence comprehension tasks (one
each). In both cognitive distraction tasks, participants listened
to audio through the headset and their spoken responses were
recorded. In the 1-back task, a single-digit number was played
every 2.5 seconds, and participants were asked to remember
and respond with the previously presented number. In the
statement task, participants listened to a short sentence of
varying length and responded subject, object, and Yes or No
about the plausibility of the sentence. This resulted in four
routes driven per block, totaling eight routes driven and eight
hazards across both parts per participant.

We employed four different orders in which participants
experienced scenarios to ensure that each hazard had an
even balance of baseline, CD tasks, and intoxication. After
participants completed the first four scenarios, they began the
intoxication portion (v1) or took a break (v2).

For each participant, the dataset includes several ques-
tionnaires from different time points in the experiment. We
collected short-form PANAS [43] questionnaires before, and
after each part, as well as NASA-TLX [44] and Karolinska
Sleepiness Scale (KSS) [45] after each hazard.

B. Intoxication Procedure

v1 participants were instructed to not eat or drink anything
for at least three hours before their study start time. Before
beginning the experiment, they provided their weight and
confirmed that they had a blood alcohol level (BAC) of 0
through a breathalyzer. The participant’s weight and gender
were used to determine how many grams of alcohol they
needed to reach a BAC of 0.1. This threshold was selected,
as prior work has shown an exponential increase in risk after
a BAC of 0.1 [46]. Participant BAC levels were monitored
throughout the study, including before and after the intoxicated
portion.

Upon completion of the first part of the study, the proctor
measured the correct amount of alcohol using a kitchen scale.
Participants chose between tequila, vodka, or whiskey and
were provided 1 oz of juice as a mixer or chaser. Participants
had 10 minutes to consume all or as much of the alcohol as
they could. The proctor assured participants that they were
not required to drink all of the alcohol and could end the
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Fig. 4: The dataset contains a wide variety of aligned hazardous events, allowing for further investigation on the impact of impairment on driving risk.

study at any point. Afterwards, BAC levels were checked and
recorded every 10 minutes. Once a participant had a BAC over
0.1 and their BAC was decreasing, participants went back to
the simulator room to complete the second half of the study.
If a participant had a BAC under 0.08, the wellness proctor
would ask if the participant would be comfortable consuming
an additional 20g of alcohol. If a participant said yes then the
additional alcohol would be provided.

Once participants completed the impaired driving portion of
the study, the proctor escorted participants to a recovery space,
where they remained until reaching a BAC level appropriate
for their return to work or home. The participants had an
average peak BAC of 0.110±0.024 and average BAC of
0.085±0.017 immediately after the intoxicated driving portion.

IV. DATASET

A. Participants

In v1 (n = 20), ages ranged from between 23-45 with
the average age being 32.2 (SD 6.4). Thirteen participants
identified as male, six identified as female, and one identified
as non-binary. Ethnically, most identified as White (8) or
Asian (7), leaving those who identified as Black/African
American (1), Native Hawaiian or Other Pacific Islander (1),
and mixed-raced (2) in the minority (one participant did not
report their race/ethnicity and another did not report any of
their demographics). There were initially 22 participants, 1
participant was excluded due to participating in a pilot with
slightly different procedures. The other participant dropped out
due to over intoxication. Despite targeting a BAC of 0.1, the
calculation is only an estimate and each participant reacted
differently to the amount ingested.

In v2 (n = 32) ages ranged from 23 to 65, with a mean
of 37.1 (SD 10.3). This portion included 18 participants who
identified as male, 13 as female, and 1 as non-binary. A
total of 9 participants identified ethnically as White, 9 as
Black/African American, 7 as Asian, and 7 as Hispanic/latino.
Of the initial 38 v2 participants, 6 were excluded for dropping
out of the study due to motion sickness.

B. Dataset Structure

We collected an overall dataset of 23.7 hours driving, for
a total of 839 km, and a total of 395 hazard instances under

TABLE II: Amount of data in each driver state.

Driver State Distance Valid
Alcohol CD Trips Hours in km Hazards

No No 168 9.9 342 160
No Yes 168 9.7 336 158
Yes No 40 2.1 81 40
Yes Yes 40 2.1 81 37

Total 416 23.7 839 395

Fig. 5: A montage of screenshots from a subset of participant experiences
of the “pedestrian sudden crossing” hazard. Hazards were triggered
depending on each participant’s speed leading up to the hazard location.
Trigger logic was tuned to provide the most similar experience within normal
speed bounds, allowing for direct comparisons of hazard responses across
participants. We labeled 5% (22/416) of cases where the hazard did not deploy
correctly, due to the participant driving off-route or excessively speeding, to
remove them from any analyses.

various conditions of impaired/normal driving – see Table II
for the full breakdown of driving data collected and Fig. 5 to
see alignment within a single hazard.

In terms of scene information, forward-facing virtual RGB,
depth, and semantic segmentation camera from CARLA’s
virtual sensors (sampled at 10 Hz and a 960×400 resolution)
were recorded. CARLA ego state and controls were collected
at 10 Hz, as well as and the other vehicle tracks. The other
vehicle tracks were collected at 10 Hz from the CARLA state,
with some impact (70/416 trips) due to an unknown simulator
traffic spawning issue, which we annotated as unavailable.
These state and scene logs were combined with gaze informa-
tion — for gaze logging, Tobii Spark Pro [37] measurements
were recorded at 60 Hz, and contained gaze vectors for each
eye, gaze point on screen, and pupil diameter.



TABLE III: A breakdown by driver state of ego-vehicle collisions (crashes)
incurred. Middle: only counting collisions during one of the eight designed
road hazards. Right: counting all collisions. Alcohol more than doubles the
rate of collisions, while cognitive distraction only increases it marginally.

Driver State Designed Hazard All Crashes
Alcohol CD Crash Crash/Hazard Crash Crash/Trip

No No 10 0.06 48 0.29
No Yes 10 0.06 52 0.31
Yes No 5 0.13 26 0.65
Yes Yes 8 0.22 26 0.65

Total 33 0.08 152 0.37

C. Collisions

Collisions with other vehicles and pedestrians occurred
throughout the collection of the study - both due to planned
hazard interactions and emergent encounters mostly due to the
dynamics of the lead vehicle. Table III shows the distribution
of these crashes across the various driver states. While there
was little effect seen for sober CD, intoxicated participants
had a substantially higher collision rate of 0.13 versus 0.06 in
designed hazards and 0.65 versus 0.29 throughout all driving.

D. Simulation Anomalies

We relied on randomly generated traffic patterns during the
part of the experiment preceding the hazard both to allow for
a wider variety of interactions and to make larger numbers
of vehicles feasible to implement. However, this occasionally
produced anomalous behaviors - such as traffic coming to a
complete standstill. Because of this, once the data collection
was complete, we visually inspected the entire dataset to
generate temporal annotations for anomalous traffic events, in
case it becomes necessary to remove them in future research.

Mistriggered hazards: Due to likely physics issues or
participants driving too quickly, some of the hazards did not
trigger as planned (as seen in Table II) and are annotated.

Despawning vehicles: In initial piloting it was found that
participants could get into traffic deadlocks. To mitigate this,
we despawn any vehicle that remains still for more than five
seconds. This sometimes results in the disappearance of vehi-
cles within view of the driver, especially near intersections. A
list of these despawns and causes are included with the dataset.

Vehicle Displacement: An unknown simulation bug some-
times caused a stationary car to appear slightly off the road,
affecting 1.5% of captured driving data. The start and end
times of these occurrences are annotated. We remove all
scenarios containing these anomalies from our analyses.

Participant off route: A total of eight participants drove
substantially off the specified route during one of their scenar-
ios. Of these, six returned to complete the route. The times of
these off-route portions are annotated in the dataset.

Other vehicles driving through barriers: We used a set
of traffic barriers to define the route to follow. However, since
we wanted the other vehicles to be able to drive other routes,
we allowed for them to drive through these barriers.

V. DATASET VALIDATION

We next demonstrate the ecological validity of our dataset
for the study of alcohol intoxication and cognitively distracted
driving by analyzing sets of well-known behavioral features
established in prior work. We consider both control and gaze
input modalities. When considering the gaze modality, we take
the average of the aggregate features in the left and right eyes.

For each feature, we first calculate its value in all scenarios.
For consistency, we only consider the 90 seconds of data
that begins 120 seconds before the end of the scenario.
This excludes the final 30 seconds to only focus on driving
without hazards. We then consider three different driver state
comparisons for analysis - (i) baseline (instances without either
form of impairment) versus intoxication, (ii) baseline versus
CD, and (iii) baseline versus both. For each comparison, we
group the scenarios based on the conditions of the experiment
and take the mean of the feature. We then perform a Wilcoxon
signed-rank test to determine if there is a significant difference
between the features in the two conditions. Because only a
subset of participants were intoxicated during the experiment,
only 20 participants are used for the (i) and (iii) comparisons,
while all 52 are used for (ii). We report both the p-value of
this test and the difference of the means in Table IV.

A. Speed and Acceleration

The disinhibition caused by alcohol has been found to
correlate with higher speeds and accelerations when driving
[47]. However, there is not yet a consensus in the field for
the impact of CD on driving performance [48]. In order to
calculate vehicle dynamics at a particular instant, we consider
the 5-second window centered on the current time. We then
fit a cubic spline weighted with a Hann window and calculate
the longitudinal speed and acceleration. Our results show mean
speed in meters per second (m/s) and mean accelerations in
meters per second squared (m/s2).

Our analysis did not find a significant impact of impair-
ment on speed. Both types of acceleration were found to be
significantly higher in intoxication, as in [47], regardless of
the presence of CD. CD had a mixed impact on acceleration
– significantly lowering forward acceleration when compared
with baseline. This interfered with the effect of intoxication
on acceleration and resulted in the increase no longer being
significant when both states occurred simultaneously.

B. Steering Reversals

The steering reversal rate (SRR) aims to capture the amount
of steering corrections needed by a driver to follow a route.
Kountouriotis et al. noted an increase in SRR when drivers
experienced different forms of CD [48], while Li et al. found
a similar increase during intoxication [49]. We follow the work
of Markkula et al. to calculate SRR [50] and select thresholds
of 0.5 and 2.5 degrees, as in [48]. We report the counts of
SRR per minute as the feature.

Intoxication resulted in a significant increase in both types
of corrections versus baseline, as seen in [49]. However,
CD did not have a significant difference and resulted in



Baseline vs Intox. Baseline vs CD Baseline vs Both
Feature Diff. Effect p-value Diff. Effect p-value Diff. Effect p-value

Longitudinal Speed (m/s) 0.267 0.092 0.6813 -0.101 0.049 0.7225 1.107 0.409 0.0674
Longitudinal Acceleration (m/s2) 0.114 0.559 0.0124 -0.066 0.418 0.0026 0.056 0.209 0.3507
Braking Acceleration (m/s2) 0.128 0.526 0.0187 -0.033 0.164 0.2365 0.127 0.442 0.0479

Steering Reversals at 0.5 Degrees (#/min) 3.667 0.693 0.0019 0.549 0.147 0.2883 3.700 0.635 0.0045
Steering Reversals at 2.5 Degrees (#/min) 1.317 0.545 0.0149 -0.141 0.191 0.1690 0.900 0.397 0.0760

Gaze Pitch Standard Dev. (Degrees) -0.275 0.459 0.0400 -0.671 0.741 0.0000 -0.666 0.760 0.0007
Gaze Yaw Standard Dev. (Degrees) -0.644 0.342 0.1259 -0.494 0.422 0.0024 -0.706 0.442 0.0479

Saccades (#/min) -58.150 0.877 0.0001 -26.849 0.571 0.0000 -72.633 0.860 0.0001
Fixations (#/min) -45.067 0.877 0.0001 -25.031 0.687 0.0000 -60.017 0.868 0.0001

Pupil Diameter (mm) 0.003 0.025 0.9108 0.080 0.615 0.0000 0.136 0.442 0.0479

TABLE IV: The results of our dataset validation. We consider four different pairwise comparisons and report their distribution mean differences and the effect
size and p-value calculated using a Wilcoxon signed-rank test. We gray out any result with a p-value greater than 0.05 as not significant.

mixed effects when considering with intoxication jointly. The
minor steering reversals at 0.5 degrees were found to occur
at a slightly higher rate when jointly modeled than when
intoxicated alone, potentially indicating some effect, as in [48].

C. Gaze Pitch and Yaw Standard Deviation

Prior work has noted that gaze becomes more concentrated
on the road when cognitively loaded [48] or intoxicated [12].
One method to measure this is to take the standard deviation of
the yaw of the gaze vector, as in [48], which should decrease
as the gaze becomes more concentrated. We report both gaze
pitch and yaw standard deviation in degrees.

We noted a significant decrease in gaze pitch standard
deviation (increased concentration) in both intoxicated and CD
experiments and yaw in CD experiments, as noted in [48] and
[12]. A similar concentration was seen for both pitch and yaw
when jointly modeled.

D. Fixation and Saccade Counts

Fixations are the periods when eye position remains rel-
atively stable, allowing for detailed visual processing of an
object or location, while saccades are the quick movements
in between. Prior work has found that the occurrence of each
of these decreases with both intoxication [51] and CD [52].
We use PyGaze [53] to extract the instances of fixations and
saccades and obtain the counts per minute as a feature.

Both fixations and saccades significantly decreased in both
driver states, as noted in prior works [51], [52]. The effect
further increases when jointly modeled.

E. Pupil Diameter

Prior work has found that pupil size increases while engaged
in a cognitive task [52], while it decreases while intoxicated
[54]. We calculate the mean pupil diameter across each sce-
nario and report the amount in millimeters (mm).

Our results show a significant increase in pupil size when
cognitively distracted (as in [52]) and in mixed data, with
no effect seen for intoxication alone. Further work is needed
to investigate the multifaceted nature of pupil response time
signals [55], [56], which can be explored in our dataset.
This could include variability due to screen brightness and

participant fatigue, which may need to be explicitly modeled
for a more thorough future analysis.

VI. MACHINE LEARNING BASELINES

A. Machine Learning Methods

In this section, we explore the usefulness of the above set of
10 features at detecting CD and intoxication. We also consider
instead framing the task as first detecting any impairment and
then differentiating the particular type of impairment. For this
last task, any data that is both CD and intoxicated is considered
intoxicated for classification purposes.

We extract 30 second segments from the dataset without
overlap. We begin extraction once 30 seconds has elapsed and
end extraction 30 seconds before the end of the recording
to remove the impact of edge effects and hazards. We then
calculate the above feature for input to a variety of models.
We employ a fixed set of five folds, divided by subject, which
will be released with the dataset. Experiments are conducted
in a round robin fashion, resulting in a set of five unweighted
average recalls (UARs), which are then averaged.

We consider five main models. The first four are random
forest, gradient boosting, a support vector machine, and logis-
tic regression and are implemented using the default scikit-
learn [57] parameters and balanced class weights. We also
implement a shallow multilayer perceptron (MLP) in PyTorch
[58] with three hidden layers of sizes 256, 128, and 64.
Each hidden layer consists of the linear layer, Leaky ReLU
activation, batch normalization, and dropout (p=0.35). We train
using the AdamW optimizer and a learning rate of 1e-5. We
consider both the cases of training four separate single task
classifiers and a single multi-task classifier.

B. Machine Learning Results

Our results across all models can be seen in Table V.
Overall, logistic regression and the multi-task MLP provide
the best performance across tasks. The tasks that involve
distinguishing intoxication from either baseline or CD have a
greater range of model performances, implying that it may be
a more difficult task than simply detecting general impairment.
Using a multi-task MLP provides a slight improvement over
all of the single-task MLPs, especially when differentiating



Model CD Intox. Impaired Diff.

Random Forest 0.64±0.02 0.62±0.07 0.67±0.03 0.63±0.07
Grad. Boosting 0.63±0.02 0.66±0.06 0.67±0.05 0.65±0.06
SVM 0.65±0.01 0.59±0.04 0.67±0.02 0.66±0.05
Logistic Reg. 0.67±0.01 0.69±0.03 0.68±0.03 0.69±0.03

Single-task MLP 0.64±0.01 0.67±0.05 0.68±0.04 0.63±0.08
Multi-task MLP 0.65±0.02 0.69±0.05 0.69±0.05 0.67±0.04

TABLE V: The results of our machine learning baselines. We explore six
different models and determine the UAR on four tasks – CD, intoxication,
general impairment detection, and differentiating (diff.) between types of
impairment, given only impaired data.

Predicted
Baseline CD Intox.

A
ct

ua
l Baseline 70% 17% 13%

CD 36% 43% 21%

Intox. 25% 22% 53%

TABLE VI: Confusion matrix for the multi-task MLP. This model produces
relatively low false intoxication rates of 13% for baseline and 21% for CD.

between impairment types. This provides evidence that similar
mixed datasets and multi-task methods may be needed to be
able to appropriately detect and react to drivers’ mental state.

We next construct a 3-class confusion matrix (seen in
Table VI) using the impaired and differentiating tasks from
the multi-task MLP. We use this model and set of tasks, as it
should provide a low false positive rate, due to its strong ability
to separate impaired and baseline data. When considering
actual baseline data, only 17% is mischaracterized as CD,
while 13% is confused for intoxication. For tested CD data,
21% is predicted as intoxication.

VII. LIMITATIONS

While the dataset is comparable in participant count and
duration to similar driver impairment-focused datasets [4]–[8],
it is relatively small when compared with many (particularly
autonomous) driving datasets. Regardless, we aim to continue
to increase the size and diversity of this dataset in future work.
One area for improvement will be to incorporate more realistic
cognitive tasks. While 1-back and sentence compression tasks
are typical CD baselines, they do not necessarily reflect typical
in-vehicle behavior. Simulated driving datasets are also ulti-
mately limited by the realism of the scene and the naturalness
of the behavior. But due to safety concerns, it is difficult to
collect a controlled experiment with in-vehicle intoxication,
especially one containing risky scenarios [6], [7].

VIII. CONCLUSIONS

We have created the first combined driving dataset con-
taining annotated examples of multiple forms of driver im-
pairment, as well as their reactions to hazards in each state.
We showed that our dataset has reasonable ecological validity
by examining how various gaze and control-based features
change under different types of impairment. We found that
gaze features are generally useful for detecting both types of
driver impairment, while control features are more effective
for intoxication. These features tend to correlate to what

has been found in prior work, validating that the dataset
contains expected phenomena of intoxication and CD. We
establish a set of machine learning baselines over a set of
tasks aimed at detecting and differentiating different types of
impairment. We find that differentiation is a more difficult
task and that multi-task models may provide some benefit.
Furthermore, our collision statistics (Table III) indicate that
a better understanding of driver impairment could result in
improved design of interventions, which could be directly
tested using this dataset.

Our dataset supports a variety of research areas, including
the prediction of (i) online / multi-task impairment, (ii) driver
hazard response, (iii) speed profile, and (iv) gaze. In particular,
each area would be of interest when conditioned on known
impairment and driver gaze. We view our dataset as a com-
plement to real-world data that allows for deeper exploration
of the intersection between impairment and responses to
hazardous events in a way never before publicly available.
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